ワイヤレス電力伝送 (WPT) 技術の 実用化に向けた動向と今後取り組み ~制度化、国際協調、標準化の動向と普及に向けた活動~

(株) 東芝 研究開発統括部 技術企画室

庄木 裕樹 ブロードバンドワイヤレスフォーラム ワイヤレス電力伝送WGリーダ

抄録

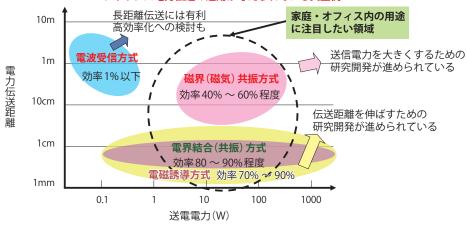
ワイヤレス電力伝送(WPT)技術の実用化のためには、WPT利用周波数の国際的協調や明確化、 電波法など法規制上での制度化、相互接続性のための標準規格化などの制度・政策上の課題が ある。本稿では、これらの課題に対する取り組みとして、ITU-R、総務省のWPT作業班、各標 準化団体などでの検討状況などについて説明し、実用化に向けた準備がほぼ終了したことを示 す。今後は、2020年以降にWPTシステムの更に普及させるという観点での取り組みが重要に なると考えられ、その取り組みの一例として、産業競争力懇談会(COCN)の中での取り組みを - 紹介する。この中で、WPT普及のための取り組みや普及時の技術課題についても触れる。

1. はじめに

2007年のマサチューセッツ工科大学 (MIT) によ る磁界結合方式(磁界共振方式とも呼ばれる)によ るワイヤレス電力伝送技術の論文発表印をきっか けとして、ワイヤレス電力伝送 (WPT) 技術に関す る研究開発が活発に行われ、いよいよ本格的な実用 化が見えてきた図。その応用範囲は広く、デジタル 機器や家電への充電・給電から電気自動車(EV)へ の充電など大電力用途まで、様々な分野で実用化に 向けた検討が行われている。既に、携帯端末用途な どで実用化も始まっている。

一方、このWPT技術の実用化のための重要課題 として、高効率な電力伝送、利用環境に依存しない システム、小型化、薄型化、軽量化といった実装技 術、安全かつ効率的なシステム制御など技術上の課 題がある。また、WPT利用周波数の国際的協調や 明確化、電波法など法規制上での制度化、相互接続 性のための標準規格化などの制度・政策上の課題も ある。この後者の制度・政策上の課題の解決に対し ては、国内では、ブロードバンドワイヤレスフォー ラム (BWF) ③ の中に組織化されたワイヤレス電力 伝送WGなどが中心となって、課題解決のための取 り組みを行っている。その取り組みの結果、総務省 のワイヤレス電力伝送作業班 41 における議論によ

り国内での省令改正による制度化が2015年末まで に行われる予定であり、また、国際協調や標準規格 化においての成果も出つつある。その結果、実用化 に向けた準備は整った状況と言え、今後は、WPT システムの普及に向けた取り組みが重要になると考 えられる。例えば、産業競争力懇談会(COCN)の 中で、WPTインフラシステムの普及に向けたプロ ジェクトりが立ち上がっている。


本稿では、先ずはWPT技術の概要について説明 し、次に産業界の描く実用化シナリオとその実現の ための課題、利用周波数の国際協調、国内制度化、 標準規格化の動向について説明する。更に、WPT 普及のための取り組みや普及時の技術的な課題につ いても触れる。

2. ワイヤレス電力伝送 (WPT) 技術とは?

ワイヤレス電力伝送には幾つかの方式がある。図 1に各方式の特徴を、電力伝送距離と送電電力の関 係から分類する。

- ①電波受信方式:主にマイクロ波をアンテナで受信 することにより電力を得る方式である。遠方まで 送電できるが、一般的に電力伝送効率は低い。
- ②電磁誘導方式 (広義には磁界結合方式): 古くから 電動歯ブラシやコードレスフォンなどで実用化さ

家庭・オフィス内での利用を想定した場合に ワイヤレス電力伝送の適用が考えられている典型例

※効率は電源を含めた伝送システム全体の効率を示す

図1 ワイヤレス電力伝送方式

れている方式である。送受コイル間での磁界結合 を利用した電力伝送である。数100kHz以下の低 い周波数が用いられる。伝送効率は高いが、伝送 距離は短い。

- ③磁界共振方式(磁界共鳴方式とも呼ばれる):②の 電磁誘導方式において、共振現象を利用して、電 力をより遠くまで伝送する方式。ただし、効率は 若干低くなる。
- ④電界結合方式:電界結合(容量性結合)を利用し て電力伝送を行う方式。伝送距離は数mm程度で ある。

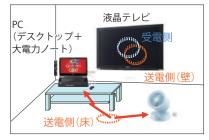
3. 産業界の描く実用化シナリオ

BWFは、2012年に、総務省の電波有効利用の促 進に関する検討会®において、WPTシステムの実 用化とそのシナリオについて説明した。その概略 は、以下の通りである。

(1) 家電機器応用(図2、図3)

5W以下の機器 (携帯・スマートフォン等) につい ては既に商用化されている。5W以上50Wの機器 (モバイル機器、ポータブル機器等) についても

図2 ポータブル機器、モバイル機器、ウェアラブル機器へのWPTの応用イメージ (電波有効利用の促進に関する検討会(第11回会合)配布資料より)


屋内、屋側、部屋間

屋内(洗面所)

壁や床、机内から給電

壁面・机/テーブル・ラックで給電

図3 住空間における家電機器へのWPTの応用イメージ (電波有効利用の促進に関する検討会(第11回会合)配布資料より)

個人宅でのワイヤレス給電例

法人,集合住宅でのワイヤレス給電例

パブリックでのワイヤレス給電例

図4 電気自動車への充電に関するWPTの応用イメージ (電波有効利用の促進に関する検討会(第11回会合)配布資料より)

2013年頃から商用化される。更に、従来の電波法 の枠組みでは個別許可無しでは利用できない50W を超える機器(大型TV、高機能PC、白物家電等) について2015年以降に商用化の見込み。

(2) 電気自動車 (EV) 応用 (図 4)

2012年段階では研究・開発フェーズであるが、 2015年以降に商用化見込みである(実際には国際 標準化の遅れにより2016年以降になる見込み)。 更に、2020年以降には一般ユーザも含め市場が広 がり普及が進む見込み。

(3) その他の応用

電動カート、福祉用機器などへ適用(導入期は現 行制度で、普及期は簡易な許可等で)も予想される。

また、センサネットワーク機器応用から始まり、無 線基地局・中継装置、産業機器などへ拡張も期待さ れる。

標準規格化の遅れなどから、2012年に提示した このシナリオから1年程度の遅れはあるものの、だ いたいこのシナリオ通りの実用化が進められている。

4. 実用化に向けた課題は何か?

ワイヤレス電力伝送 (WPT) 技術の実用化のため に解決すべき課題を以下にまとめる。

図5には、磁界共振方式を例にとり、典型的なシ ステム構成例を示す。コイルによる磁界結合により 電力を伝送するとともに、等価回路的にインダクタ LとキャパシタCの共振回路となる構成にして、そ

図5 磁界共振方式における構成例

の共振周波数により電力伝送を行う。受信した電力 は整流器により直流に変換され、充電池への充電や 各装置への給電が行われる。ここで、実際の製品に おいては、送受電の開始や停止、受電装置の認証、 高効率な電力伝送の維持などのために制御系が必要 となる。そのために、無線通信機能を含めた制御器 も必要となる。

実用化時に必要な課題として、以下の技術上の課 題と制度・政策上の課題に分類できる。

(1)技術開発上の課題

- ①効率な電力伝送技術: 高効率な伝送を行うための システム最適化。送電デバイス、整流器、コイル、 整合回路など。
- ②利用環境に依存しないシステム:周辺環境の影響 に対する補償技術など。
- ③実装技術: 小型化、薄型化、軽量化など。
- ④安全かつ効率的なシステム制御:認証、送電開 始・停止などのプロトコル、1対多への電力伝送 など。

(2) 制度・政策上の課題

- ①電波法など法令整備:利用周波数、WPT機器の カテゴリーの明確化とその制度化。
- ②人体防護:電波防護指針[7].[8]、ICNIRPガイドラ イン

 などの

 指針値の

 準拠が

 基本。

 ただし、

 そ のための評価法・測定法の明確化が必要。
- ③発熱対策:障害物検知などの安全性対策、発熱対 策。
- ④電磁干渉:他の無線システムへの影響が無いよう にするための放射妨害波、伝導妨害波の規制値の 設定とその測定方法の整備など。
- ⑤標準規格化:世界中どこでも同一規格で利用でき るようにすることが普及のために必要。

5. 制度・政策上の課題に対する取り組み

前述の制度・政策上の課題に注目し、その中でも、 利用周波数の国際協調、国内での制度化、国内外の 標準規格化について、その動向やBWFでの活動内 容について以下に説明する。

5.1 国内での制度化

3.で述べた実用化シナリオにあるように、今後は 電気自動車への充電など50Wを超えるワイヤレス 電力伝送システムの実用化が予想されることから、 BWFでは、総務省「電波有効利用の促進に関する検 討会」などにおいて国内の制度化の必要性をアピー ルしてきた。この結果、2013年6月に、総務省の 電波利用環境委員会の下にワイヤレス電力伝送作業 班 (以降、WPT作業班と呼ぶ) 4 が設置され、制度 化議論が始まった。

WPT作業班における検討課題は、①検討対象の ワイヤレス電力伝送システムの技術的諸元の明確 化、②他システムとの周波数共用条件の検討、③放 射妨害波および伝導妨害波に関する許容値の決定、 ④放射妨害波および伝導妨害波測定のための測定モ デル・測定方法の明確化、⑤電波防護指針への適合 性確認などである。表1には、WPT作業班で制度 化対象となっているワイヤレス電力伝送システムを 示す。表2には、これらのシステムに対して共用検 討の対象となる既存の無線システムを示す。

WPT作業班での検討は2015年5月に一旦の結論 が得られ、表1に示したシステムのうち、電気自動 車用WPT、家電機器用WPT①と③の3つのWPT システムの制度化が決まった。WPT作業班の上位 にある電波利用環境委員会、情報通信審議会での審 議や、一部答申によるパブコメを経て、2015年末

表1	WPT作業班での制度化対象システム
10	

対象WPTシステム	電気自動車用WPT	家電機器用 WPT システム ① (モバイル機器)	家電機器用WPTシステム ②(家庭・オフィス機器)	家電機器用 WPT システム ③ (モバイル機器)
電力伝送方式	磁界結合方式(電磁誘導方式、磁界共鳴方式)			電界結合方式
伝送電力	~3kW程度 (最大7.7kW)	数W~100W程度	数W~1.5kW	~100W程度
使用周波数	42kHz~48kHz、 52kHz~58kHz、 79kHz~90kHz、 140.91kHz~148.5kHz	6765kHz~6795kHz	20.05kHz~38kHz、 42kHz~58kHz、 62kHz~100kHz	425~524kHz
送受電距離	0~30cm程度	0~30cm程度	0~10cm程度	0~1cm程度

表2 WPT作業班での共用検討の対象システム

WPTの利用形態・周波	设数 (与干渉側)	周波数共用検討の必要なシステム(被干渉側)	
	20.05-38kHz		
家電機器用WPT② (家庭・オフィス機器)	42-58kHz		
	62-100kHz		
	42-48kHz	AM ラジオ(525-1606.5kHz)	
	52-58kHz		
電気自動車用WPT	79-90kHz		
	140.91-148.5kHz	電波時計(40kHz, 60kHz)、列車無線等(10-250kHz) アマチュア無線(135.7-134.2kHz)、AM ラジオ(525-1606.5kHz)	
家電機器用WPT③ (モバイル機器)	425-524kHz	AM ラジオ(525-1606.5kHz)、船舶無線等(405-526.5kHz)、 アマチュア無線(472-479kHz)	
家電機器用WPT① (モバイル機器)	6,765-6,795kHz	固定•移動通信 (6,765-6,795kHz)	

までは電波法の中の高周波利用設備/型式指定機器 として省令改正が行われる予定である。なお、家電 機器用②については、他システムとの共用化を可能 とするためにワイヤレス電力伝送システム側の仕様 や利用条件の見直しが必要であり、その見直しが終 わるまで検討は一旦ペンディングとなっている。

5.2 利用周波数の国際協調

国際的な WPT利用周波数の協調に関しては、 2014年に開催された国際電気通信連合・無線通信 部門(ITU-R) のSG1会合において、Non-Beam WPT (磁界結合方式など近傍領域における WPT) に 関するレポートが発行された「10」。これにより、 WPTシステムが無線システムとして国際制度上の 枠組みの中で市民権を得たと言える。翌年2015年 に開催されたITU-R SG1会合では、このレポートが 改訂されるとともに、WPT利用周波数を国際制度 上で明確化させるための勧告 (Recommendation) 化に向けた議論が開始された。この中で、日本で制 度化された家電機器用の6.78MHz帯とEV用の 79kHz~90kHzは、有力な利用周波数の候補に なっているものの、勧告化には国際的な観点での他 システムとの共用検討の必要性が指摘されている。 なお、2015年のITU-Rの場において、WPT利用推 進の立場にあるのは、日本の他では、韓国、米国、 イスラエルなどであり、一方で、慎重な姿勢を見せ ているのは放送業界の意見が強い英国、ドイツや国 内での検討が遅れている中国などである。

このような状況の中で、総務省が国際協調を更に 積極的に行うため、世界無線通信会議 (WRC) にお いてWPT周波数帯を国際制度上で明確にアサイン するという方針を打ち出した。具体的には、2015 年11月に開催されるWRC-15において、その次回の 2019年のWRC-19における新議題として「WPT周 波数の明確化」を提案する予定である。既に、アジ ア・太平洋地区の事前会議での合意は得られており、 新議題として承認される可能性は高い。ここで注目 すべき点は、これまで慎重な姿勢であった中国が真 反対の推進側に変わったことである。このような情 勢から、ITU-Rにおける勧告化の議論は、WRCへの 入力が前提となるため、WPT周波数に関する国際協 調の議論が今後一気に加速する可能性もある。

5.3 標準規格化の動向

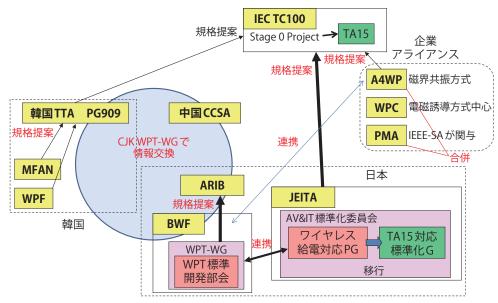
家電機器および電気自動車の各々の分野におい て、インターオペーラビリティのための標準規格化 の議論も活発である。

図6には家電機器応用における標準規格化動向の 状況、図7には電気自動車応用における標準規格化 動向の状況を各々示す。特に、注目すべき組織・団 体での標準化の動向について、以下に説明する。

(1) モバイル・IT機器用途

①WPC (Wireless Power Consortium)

2010年7月に、業界で最初に5Wの仕様をリ リースして、製品展開を積極的行ってきた。2015 年6月には、15W規格もリリースしている。これ らの規格におけるWPT方式は電磁誘導方式であり、 伝送距離は数mm、周波数は110-205kHzが基本に なっている。次の規格として、数kWクラスのキッ チンなどの家電応用も検討中である。


②A4WP (Alliance for Wireless Power)

2013年7月に、BSS V1.2 (スマートフォン向け) 仕様を策定した。2014年11月には、BSS V1.3

(ノートPC・タブレット向け) 仕様も策定し、現在 そのバージョンアップ仕様を策定中である。この他 に、BSS V1.4 (ウエアラブル機器向け) も検討中で ある。WPT方式は磁界共振方式であり、伝送距離 は数cm、周波数は6.78MHz (ISMバンド) を利用 している。また、制御にはBluetoothによるOut-of-Band通信を利用している。複数デバイスを同時に 給電できるのが特徴である。なお、A4WPは、 2015年7月に電磁誘導方式の規格化を行っている PMA (Power Matters Alliance) と合併した。

(2) 電気自動車 (EV) 充電用途

- ①IEC (International Electrotechnical Commission) TC69 (電気自動車) PT61980 以下の3つ規格化を検討中である。
- √IEC 61980-1 (一般共通条件): 2015年7月にIS (International Standard) として発行
- √IEC 61980-2 (制御通信方式): 2016年3月にTS (Technical Specification) として発行予定。制御通 信はWPTとは別周波数帯で行うことが基本である。
- √IEC 61980-3 (磁界結合WPT方式): 2016年3月に TSとして発行予定。候補となる周波数は、85kHz 帯を支持するのが多勢(一部140kHz帯を主張) である。また、コイルタイプおよび互換性につい ては複数方式がAnnexに掲載される方向。

IEC: International Electrotechnical Commission, TTA: Telecommunications Technology Association,

MFAN: Magnetic Field Area Network, WPF: Wireless Power Forum,

CCSA: China Communications Standards Association,

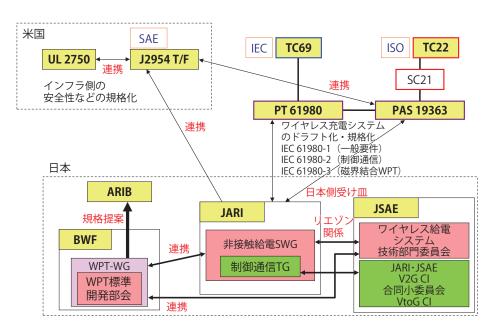
A4WP: Alliance for Wireless Power, WPC: Wireless Power Consortium, PMA: Power Matter Alliance, ARIB:電波産業界, JEITA:電子情報技術産業協会, BWF:ブロードバンドワイヤレスフォーラム

図6 家電機器応用の標準規格化団体と関係

②SAE (Society of Automotive Engineers) J2954T/F

国際統一の規格化(単一規格化)を検討中、2015 年末頃までにTIR (ガイドライン) 発行予定。既に、 普通自動車向けのWPT周波数として、81.38-90.00kHzを決定した。ISO(International Organization for Standardization) PAS19363 と連 携した活動を行っている。

(3) 国内規格化


国内では、電波産業界 (ARIB) においてWPTシ ステムに関する標準規格化を行う枠組みが出来上 がっている。具体的には、BWFが標準規格案を作 成し、ARIBの規格会議においてそれを審議して、 承認後にARIB標準規格として成立する。これまで に、ARIB標準規格ARIB-T113として、以下の2つ の規格が成立している。

√電界結合型ワイヤレス電力伝送システム √6.78MHz帯を用いる磁界結合方式ワイヤレス電 力伝送システム

電界結合型ワイヤレス電力伝送システムについて は表1に示したWPT作業班での制度化対象システム と同様なシステムであるが、送電電力は50W以下 である。また、6.78MHz帯を用いる磁界結合方式ワ イヤレス電力伝送システムについては、前述の A4WPのスマートフォン用規格BSS V1.2を国内規格 化したものになっている。この二つの規格とも、 50W以下ながら、電波防護指針への対応方法など で総務省のWPT作業班の検討結果との関連があっ たため、作業班結果に関する一部答申(2015年1月) を受けて、2015年7月のARIB規格会議での審議に より成立した。この二つの標準規格は、ARIB標準規 格ARIB T-113の各々第1編、第2編として記載され ている。また、これ以外に、マイクロ波帯表面電磁 結合方式ワイヤレス電力伝送システムについても、 2015年12月のARIB規格会議で審議予定である。 今後は、EV充電用ワイヤレス電力伝送システムの標 準規格案について、IEC PT61980やSAE J2954など の規格化の推移を見て提案していく予定である。

6. WPT普及のための取り組み

これまでの説明から、ワイヤレス電力伝送(WPT) 技術に関して、国際協調や制度化、標準化に関して 現段階である程度の方向性が見えてきたと言える。 今後は、その実用化・普及促進が重要課題になる。 この中で、特に、EVやパーソナルモビリティを対 象としたWPT用の充電インフラの整備には、設置 事業者がWPT装置・設備に投資した資金を回収で き、更に利益も獲得できるビジネスモデルを構築す

UL: Underwriters Laboratories Inc., IEC: International Electrotechnical Commission, ISO:International Organization for Standardization, ARIB:電波産業界, JARI:日本自動車研究所, JSAE: 自動車技術会、 BWF: ブロードバンドワイヤレスフォーラム

電気自動車応用の標準規格化団体と関係 図7

ることが重要になると考えられる。産業競争力懇談 会(COCN) [5] では、このような課題に関しての取り 組みを、推進テーマ「ワイヤレス電力伝送の普及イ ンフラシステム」の中で実施している。以下にその 内容について紹介する。

図8には、WPTインフラシステムの普及のため のシナリオを示す。2020年以降のWPTシステム普 及フェーズにおいて、そのインフラシステムを拡充 していくことがポイントになる。検討の視点は以下 の通りである。

- ①WPTインフラシステムを普及させるためのシス テムコンセプトおよびビジネスモデルの構築
- ②WPTインフラシステム実現のための制度、規制

など政策上の課題の抽出とその解決策の検討

- ③WPTインフラシステム実現のための技術的課題 の抽出とその解決策の検討
- ④EV/PHEVのみならずマイクロEV電動バイク、 カートなどのパーソナルモビリティ、産業用機 器なども含めた利用範囲の拡大のための検討

このCOCNでの検討は2015年度~2016年度で 実施する予定であり、2016年度末には、WPTイン フラシステムの普及に向けた提言や施策を提案して いく予定である。

WPTシステムの普及フェーズにおける技術課題 は、導入フェーズの技術課題から変化していくと考 えられる。図9、図10に、各々、EV、パーソナル

商用化準備段階 (~2015年)

- ①国内での電波法での 省令化完 (2015年)
- ②ITU-Rでの国際協調 (2016年に勧告化を 日標)
- ③EV向け国際的標準 規格化の完 (IEC、SAEなどで 2016年初め)

商用化第1フェー (2016~2020年)

先ずは EV用 WPT で商用化 -般家庭向けのオプション として利用)

特定事業者向け(EVバス等) での商用化

商用化第2フェー (2020年以降)

WPTインフラシステム拡充 により EV 向けの普及拡大

EV以外への展開

図8 WPTインフラシステムの普及のためのシナリオ

商用化第1フェーズ (2016~2020年)

制度上の基本条件

- ・磁界結合方式
- ·85kHz帯
- •最大7.7kW ・最大30cm
- -般家庭向けのオプション として利用

特定事業者向けでの商用化

送電電力の増大 (急速充電、EVバス対応等)

利用数の増加

(大規模駐車場での利用等)

応用範囲の拡大 (パーソナルモビリティ対応等

> 利用形態の多様化 (走行中給電等)

商用化第2フェーズ (2020年以降)

ンフラ普及

のための

ビジネス

モデルが

アグリゲーション 対策の必要性

送電電力の増大時の 不要干涉対策

受電装置の 多様化に対する対策

利用形態、技術方式の 多様化に対する対策

図9 EV、パーソナルモビリティ用WPTシステムの普及フェーズにおける技術課題

商用化第2フェーズ 商用化第1フェーズ ・ 送電電力の増大 制度上の基本条件 ・家庭内、オフィス内での利用拡大⇒アグリゲーション対策 ·磁界結合方式(or 電界結合方式) ・最大100W程度 ・WPTモジュール化により電子機器への内蔵化、双方向電力伝送 •最大30cm ・送電器と受電器が独立 ⇒電子機器との混変調の課題 WPT機能の 多様化 専用のWPT送電器 内蔵のWPT送受電共用器

図10 家電、デジタル機器用WPTシステムの普及フェーズにおける技術課題

モビリティ用WPTシステムの普及フェーズにおけ る技術課題、家電、デジタル機器用WPTシステム の普及フェーズにおける技術課題の例を示す。今 後、このような技術課題に対する技術方式の検討が 進められると期待される。

7. おわりに

ワイヤレス電力伝送システムの実用化に向けた準 備がある程度終わり、いよいよ本格的な実用化が始 まる状況になっている。今後は、広い分野で多くの WPTシステムが普及していくことを想定して、そ のために必要な技術開発を行うことが重要になって いくと考えられる。現在、我が国のWPT技術は、 世界的に見て上位のポジションにあるが、普及 フェーズにおける課題に対する検討や技術開発を早 期かつ積極的に行うことにより、国際競争力を維持 し更に強固にできると考えられる。この分野の研究 開発、実用化に関わる関係者の今後の努力とその成 果に大いに期待する。

参考文献

- [1] A. Kurs et al., "Wireless Power Transfer via Strongly Coupled Magnetic Resonances", Science, Vol.317, No.5834, pp.84-86, 6 July, 2007.
- [2] 庄木裕樹, "ワイヤレス電力伝送の技術動向・課題と実 用化に向けた取り組み、電子情報通信学会、無線電力伝 送研究会 (第2回), WPT2010-07, July 2010.
- [3] ブロードバンドワイヤレスフォーラム, http://bwf-yrp.net/
- [4] 総務省 情報通信審議会 情報通信技術分科会 電波利 用環境委員会 ワイヤレス電力伝送作業班, http://www.soumu.go.jp/main_sosiki/joho_tsusin/ policyreports/joho_tsusin/denpa_kankyou/wpt.html
- [5] 産業競争力懇談会 (COCN) 2015年度活動企画書 「ワ

- イヤレス電力伝送の普及インフラシステム」、http:// www.cocn.jp/common/pdf/thema81-P.pdf
- [6] ブロードバンドワイヤレスフォーラム、"ワイヤレス電力伝 送技術による社会貢献とその実用化に向けた検討課題", 電波有効利用の促進に関する検討会,第3回会合,資料 3-3, http://www.soumu.go.jp/main_content/000161540. pdf (2012年5月24日).
- [7] 電波防護指針(郵政省電気通信技術審議会答申(平成2 年6月): 諮問第38 号 「電波利用における人体の防護指 針|)
- [8] 電波防護指針 (郵政省電気通信技術審議会答申 (平成9 年4月): 諮問第89 号 「電波利用における人体防護の在
- [9] ICNIRP ガイドライン、Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)
- [10] Report ITU-R SM.2303-0, "Wireless power transmission using technologies other than radio frequency beam", http://www.itu.int/pub/R-REP-SM.2303-2014.

Profile

庄木 裕樹 (しょうき ひろき)

1960年生まれ

1984年 北海道大学大学院工学研究科電子工学専攻修士課程 修了

1984年 (株) 東芝入社

衛星放送、レーダー、無線端末および基地局、無線 LAN/PANシステム、ワイヤレス電力伝送システム などの研究開発に従事。ブロードバンドワイヤレス フォーラム (BWF) 電力伝送WGリーダとして、ワ イヤレス電力伝送システムの制度化や標準化活動に 従事。工博。

